Dynamic of Threshold Solutions for Energy-Critical NlS
نویسندگان
چکیده
منابع مشابه
Dynamic of Threshold Solutions for Energy-critical Nls
We consider the energy-critical non-linear focusing Schrödinger equation in dimension N = 3, 4, 5. An explicit stationnary solution, W , of this equation is known. In [KM06], the energy E(W ) has been shown to be a threshold for the dynamical behavior of solutions of the equation. In the present article, we study the dynamics at the critical level E(u) = E(W ) and classify the corresponding sol...
متن کاملEnergy-critical Nls with Quadratic Potentials
We consider the defocusing Ḣ-critical nonlinear Schrödinger equation in all dimensions (n ≥ 3) with a quadratic potential V (x) = ± 1 2 |x|. We show global well-posedness for radial initial data obeying ∇u0(x), xu0(x) ∈ L. In view of the potential V , this is the natural energy space. In the repulsive case, we also prove scattering. We follow the approach pioneered by Bourgain and Tao in the ca...
متن کاملdiagnostic and developmental potentials of dynamic assessment for writing skill
این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...
15 صفحه اولEnergy-supercritical Nls: Critical Ḣ-bounds Imply Scattering
We consider two classes of defocusing energy-supercritical nonlinear Schrödinger equations in dimensions d ≥ 5. We prove that if the solution u is apriorily bounded in the critical Sobolev space, that is, u ∈ L∞t Ḣ sc x , then u is global and scatters.
متن کاملRegularity of Almost Periodic modulo Scaling Solutions for Mass-critical Nls and Applications
In this paper, we consider the Lx solution u to mass critical NLS iut + ∆u = ±|u| 4 d u. We prove that in dimensions d ≥ 4, if the solution is spherically symmetric and is almost periodic modulo scaling, then it must lie in H x for some ε > 0. Moreover, the kinetic energy of the solution is localized uniformly in time. One important application of the theorem is a simplified proof of the scatte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric and Functional Analysis
سال: 2009
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-009-0707-x